Nitric oxide-mediated modulation of the murine locomotor network
نویسندگان
چکیده
Spinal motor control networks are regulated by neuromodulatory systems to allow adaptability of movements. The present study aimed to elucidate the role of nitric oxide (NO) in the modulation of mammalian spinal locomotor networks. This was investigated with isolated spinal cord preparations from neonatal mice in which rhythmic locomotor-related activity was induced pharmacologically. Bath application of the NO donor diethylamine NONOate (DEA/NO) decreased the frequency and modulated the amplitude of locomotor-related activity recorded from ventral roots. Removal of endogenous NO with coapplication of a NO scavenger (PTIO) and a nitric oxide synthase (NOS) blocker [nitro-l-arginine methyl ester (l-NAME)] increased the frequency and decreased the amplitude of locomotor-related activity. This demonstrates that endogenously derived NO can modulate both the timing and intensity of locomotor-related activity. The effects of DEA/NO were mimicked by the cGMP analog 8-bromo-cGMP. In addition, the soluble guanylyl cyclase (sGC) inhibitor ODQ blocked the effects of DEA/NO on burst amplitude and frequency, although the frequency effect was only blocked at low concentrations of DEA/NO. This suggests that NO-mediated modulation involves cGMP-dependent pathways. Sources of NO were studied within the lumbar spinal cord during postnatal development (postnatal days 1-12) with NADPH-diaphorase staining. NOS-positive cells in the ventral horn exhibited a rostrocaudal gradient, with more cells in rostral segments. The number of NOS-positive cells was also found to increase during postnatal development. In summary, we have shown that NO, derived from sources within the mammalian spinal cord, modulates the output of spinal motor networks and is therefore likely to contribute to the fine-tuning of locomotor behavior.
منابع مشابه
Gating the polarity of endocannabinoid-mediated synaptic plasticity by nitric oxide in the spinal locomotor network.
The final motor output underlying behavior arises from an appropriate balance between excitation and inhibition within neural networks. Retrograde signaling by endocannabinoids adapts synaptic strengths and the global activity of neural networks. In the spinal cord, endocannabinoids are mobilized postsynaptically from network neurons and act retrogradely on presynaptic cannabinoid receptors to ...
متن کاملSynergistic Effect of LPS, IFN- and Iron on Apoptosis of Balb/c Mice Macrophages Following Nitric Oxide Production
Objective(s) Previous studies have demonstrated that the nitric oxide (NO) dependent death of murine peritoneal macrophages activated in vitro with IFN-g and LPS is mediated through apoptosis. In the present study, we investigated the synergistic effect of LPS, IFN-g and iron on NO production and apoptosis. Materials and Methods After determination of iron cytotoxicity, the peritoneal macrop...
متن کاملEffect of Angiotensin II on Blood Flow in Acute and Chronically Inflamed Knee Joints of Rabbits: The Role of Nitric Oxide
Background: Angiotensin converting enzyme (ACE) upregulation in stromal cells of joints affected by rheumatoid arthritis may lead to higher tissue angiotensin II that is a vasoconstrictor and mitogen factor. To date, the role of angiotensin II on regulating blood flow in inflamed joints has not been studied. Methods: Acute and chronic joint inflammation was induced in rabbits by intra-articular...
متن کاملModulation of Lipopolysaccharide Stimulated Nuclear Factor kappa B Mediated iNOS/NO Production by Bromelain in Rat Primary Microglial Cells
Background: Microglial cells act as the sentinel of the central nervous system .They are involved in neuroprotection but are highly implicated in neurodegeneration of the aging brain. When over-activated, microglia release pro-inflammatory factors, such as nitric oxide (NO) and cytokines, which are critical in eliciting neuroinflammatory responses associated with neurodegenerative diseases. Thi...
متن کاملNitric oxide mediated the effects of nebivolol in cardiorenal syndrome
Objective(s): Despite several proposed mechanisms for the pathophysiology of cardiorenal syndrome (CRS), the exact mechanism remains unclear. Nitrosative stress has been argued as a key mechanism recently. Nebivolol is a beta-blocker with nitric oxide (NO)-releasing effect. In the present study, NO-mediated effects of two different treatment regimes of nebivolol in CRS...
متن کامل